Hierarchical Context enabled Recurrent Neural Network for Recommendation
Kyungwoo Song*, Mingi Ji*, Sungrae Park, Il-Chul Moon
(* : Equal Contribution)

30-Second Summary

Question: Can we detect where the user’s interest changes?

Our answer: Yes!

How?: Interest drift assumption

- “If the user’s local context (for sub-sequence) and the current item are very different, the user’s temporary interest drift occurs.”

More specific: Hierarchical Context enabled Recurrent Neural Network (HCRNN)

- Incorporate the interest drift assumption
- Design hierarchical contexts (global, local, and temporary)
- Keep local and temporary contexts independently
- Introduce interest drift gate to capture the interest drift

Motivation

- A user history is a sequence of user orders or clicks, and the history represents the user’s interest.
- A long user history inevitably reflects the transitions of personal interests over time.
- We can predict next item better if we include modeling on an interest drift of users.

Model Assumption

- The user’s interest can be hierarchically ranging from general interest to a temporary (global, local, and temporary)
- Each hierarchical context have different abstract levels of information.
- Interest drift assumption

Related Works

- LSTM

Sequential Recommendation

- NARM [CIKM-17]: Focus on long-term interest
- STAMP [KDD-18]: Focus on short-term interest
- HCRNN (Ours): Focus on interest drift with long-term and short-term interest modeling

There are no studies which capture user's interest change with hierarchical context modeling

Model Overview

- Goal: Predict next item \(y_T \) given \(x_{1:T} \)
- \(x_T \): Current item embedding
- \(\theta \): Global context proportion for \(x_{1:T} \)
- \(M_{global} \): Global context memory
- \(c_t \): Local context (generated by global context, not current item)
- \(h_t \): Temporary context (generated by previous temporary context and current item, not local context)

Methodology

- Proportion for sequence (Variational Encoder)
- Attention weight
- Generation of local context with local context gate \(G_l^{(t)} \)
- Generation of temporary context \(h_t \) (separation with local context)
- Interest drift assumption
- Sigmoid function is not sharp
- Introduce the interest drift gate \(G_{id} \) to make \(h_t \) focus on the current input

Inference

- Variational inference by optimizing the evidence lower bound (ELBO)

- \(G_{id} \) has a relatively small value
- This small value is caused by the selection of different category items to the previous sub-sequence at \(t=16 \).

Results

1) Quantitative Results

- HCRNN-1 > Baselines (NARM, STAMP)
- Necessity of hierarchical context
- HCRNN-3 > HCRNN-2, HCRNN-1
- Interest drift assumption is experimentally justifiable.
- HCRNN-3+Bi > HCRNN-3
- Bi-channel attention with hierarchical contexts may improve the performance experimentally.

2) Context Embedding

- If the genre of the current item is different with previous items, \(r_t \circ G_{id}^{(t)} \) has a smaller value compared to the opposite situation.

3) Gate Analysis

- The bi-channel attentions distinguishes the attentions
- \(a_2^{(c)} \) focuses on the neighbor attention (short-term)
- \(a_2^{(d)} \) reads out through the whole sequence (long-term)

4) Case Study

- Sub-sequence1 (Action) Sub-sequence2 (Musical) Sub-sequence3 (Action/Romance)
- LSTMM, HCRNN, HCRNN-1, HCRNN-2, HCRNN-3, HCRNN-3+Bi

Class

- Action
- Musical
- Action/Romance

Model Overview

- HCRNN

HCRNN-I

- Direct connection between \(c_t \) and \(h_t \)

HCRNN-2

- \(r_t = \sigma(c_t \circ h_t \circ a_t \circ h_t \circ h_t) \)

HCRNN-3

- \(r_t = \sigma(a_t \circ h_t \circ a_t \circ h_t \circ h_t) \)

HCRNN-3+Bi

- \(a_2^{(c)} \) : attention based on the local context (Short-term dependency)
- \(a_2^{(d)} \) : attention based on the temporary context (Long-term dependency)